metal-organic papers

Received 7 November 2005 Accepted 25 November 2005

Online 3 December 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhen-Yu Hou^a* and Dong-Mei Zhu^b

^aDepartment of Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, People's Republic of China, and ^bSchool of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China

Correspondence e-mail: zhenyuhou1996@yahoo.com

Key indicators

Single-crystal X-ray study T = 291 K Mean σ (C–C) = 0.005 Å R factor = 0.056 wR factor = 0.131 Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,1'-(Butane-1,4-diyl)bis(1*H*-benzimidazol-3-ium) bis[bis(pyridine-2,6-dicarboxylato- κ^3O,N,O')ferrate(III)] methanol disolvate

In the title complex, $(C_{18}H_{20}N_4)$ [Fe $(C_7O_4H_3N)_2$]₂·2CH₄O, the Fe atom exists in an approximately octahedral geometry, chelated by two pyridine-2,6-dicarboxylate ligands. Extensive hydrogen bonding among the carboxylate groups, the 1,1'-(butane-1,4-diyl)bis-1*H*-benzimidazol-3-ium ion and solvent methanol molecules as well as π - π stacking are present in the structure.

Comment

Proton transfer is one of the most important elementary processes in physics, chemistry and biochemistry, as it is the key process in important reactions such as auto-ionization in water, acid-base neutralization reactions and enzyme catalysis (MacDonald et al., 2000). Extensive studies on the reaction of pyridine-2,6-dicarboxylic acid (H₂pdc) with lanthanides and transition metals in the presence of Lewis bases such as pyridine-2,6-diamine (pda), 1,10-phenanthroline (phen) and creatinine (creat) have led to the isolation of proton transfer ionic complexes [pdaH]₂[La₂(pdc)₄(H₂O)₄]·2H₂O, [pdaH]₂-[Co(pdc)₂]·H₂O (Moghimi et al., 2002), (creatH)[Zn(pdc)- $(pdcH)]\cdot 4H_2O$ (Moghimi, Sharif et al., 2005) and [Zn(pdc)₂][Zn(phen)₂(H₂O)₂]·7H₂O (Moghimi, Sheshmani et al., 2005). On the other hand, the 1,1'-(butane-1,4-diyl)bis-1Hbenzimidazole (bbbm) N-heterocycle as a flexible bidentate ligand affords adducts with some transition metal salts (Meng et al., 2003; Xiao et al., 2004). In this work, we selected H₂pdc as the proton donor and bbbm as the proton acceptor, and successfully prepared a new proton transfer Fe^{III} complex, (I).

Complex (I) consists of two mononuclear $[Fe(pdc)_2]^$ anions, one $(H_2bbbm)^{2+}$ dication and two solvent methanol molecules (Fig. 1). The central Fe atom is hexacoordinated by two pyridine N and four carboxylate O atoms from two deprotonated pdc^{2-} ligands in an approximately octahedral geometry; the carboxylate group coordinates in a mono-

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

Figure 2

A perspective view of the hydrogen-bonding interactions (dashed lines) in (I). For clarity, H atoms not involved in hydrogen bonding have been omitted.

dentate fashion. The two ligands are almost perpendicular to each other.

Anions interact with the (H₂bbbm)²⁺ dication and solvent methanol molecules to produce a hydrogen-bonded layered structure by three types of hydrogen bond (N-H···O, O- $H \cdots O$ and $C - H \cdots O$) (Table 2 and Fig. 2). The $[Fe(pdc)_2]^$ units are linked into layers, and the space between these layers is occupied by the $(H_2bbbm)^{2+}$ cations. A face-to-face separation of 3.642 (2) Å between the N2-containing pyridine rings from two neighboring anions suggests the existence of π - π aromatic stacking interactions.

Experimental

1,1'-(Butane-1,4-diyl)bis-1H-benzimidazole (bbbm) was prepared according to a literature method (Xie et al., 2000). A methanol solution (5 ml) of H₂pdc (16.7 mg, 0.1 mmol) was added dropwise to a methanol solution (5 ml) of Fe(ClO₄)₃·7H₂O (23.2 mg, 0.05 mmol) and bbbm (29.0 mg, 0.1 mmol) to give a clear solution. Light-green block-like crystals (55% yield) of (I) were obtained one week later. IR (KBr, cm⁻¹): 3081 (w), 1675 (s), 1452 (w), 1322 (s), 1167 (s), 1072 (s), 914 (m), 742 (s), 681 (m), 439 (w). Analysis calculated for C48H40Fe2N8O18: C 51.08, H 3.57, N 9.93%; found: C 51.23, H 3.47, N 9.85%.

4764 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.06P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

 $R_{\rm int} = 0.046$

 $\theta_{\rm max} = 26.0^\circ$ $h = -11 \rightarrow 11$

 $k = -13 \rightarrow 13$ $l = -16 \rightarrow 16$

+ 0.88P]

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.43 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.74 \text{ e } \text{\AA}^{-3}$

3875 reflections with $I > 2\sigma(I)$

Crystal data

$(C_{18}H_{20}N_4)[Fe(C_7H_3NO_4)_2]_2$.	Z = 1
2CH ₄ O	$D_x = 1.549 \text{ Mg m}^{-3}$
$M_r = 1128.58$	Mo $K\alpha$ radiation
Triclinic, $P\overline{1}$	Cell parameters from 779
a = 9.2751 (19) Å	reflections
b = 11.035 (2) Å	$\theta = 2.1 - 18.0^{\circ}$
c = 13.167 (3) Å	$\mu = 0.69 \text{ mm}^{-1}$
$\alpha = 106.50 \ (3)^{\circ}$	T = 291 (2) K
$\beta = 101.19 \ (3)^{\circ}$	Block, light green
$\gamma = 103.07 \ (3)^{\circ}$	$0.20 \times 0.18 \times 0.17 \text{ mm}$
V = 1209.6 (6) Å ³	

Data collection

Bruker SMART APEX CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.875, \ T_{\max} = 0.892$ 8712 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.056$ wR(F²) = 0.131 S = 1.024764 reflections 344 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

C1-N1	1.335 (4) C15–N3		1.395 (4)
C5-N1	1.330 (4)	C20-N4	1.391 (4)
C6-O2	1.210 (4)	C21-N3	1.313 (4)
C6-O1	1.303 (4)	C21-N4	1.327 (4)
C7-O4	1.229 (4)	C22-N4	1.482 (4)
C7-O3	1.303 (4)	C24-O9	1.407 (5)
C8-N2	1.336 (4)	Fe1-O1	1.992 (2)
C12-N2	1.328 (4)	Fe1-O7	1.996 (3)
C13-O6	1.233 (4)	Fe1-O5	2.039 (3)
C13-O5	1.282 (4)	Fe1-N1	2.061 (3)
C14-O8	1.205 (4)	Fe1-O3	2.066 (2)
C14-O7	1.310 (4)	Fe1-N2	2.073 (3)
O1-Fe1-O7	93.60 (10)	N1-Fe1-O3	75.03 (10)
O1-Fe1-O5	93.73 (10)	O1-Fe1-N2	117.19 (10)
O7-Fe1-O5	150.61 (9)	O7-Fe1-N2	75.91 (10)
O1-Fe1-N1	76.79 (10)	O5-Fe1-N2	75.43 (10)
O7-Fe1-N1	105.10 (10)	N1-Fe1-N2	166.01 (10)
O5-Fe1-N1	104.28 (10)	O3-Fe1-N2	91.00 (10)
O1-Fe1-O3	151.81 (9)	C5-N1-C1	122.2 (3)
O7-Fe1-O3	93.24 (10)	C5-N1-Fe1	120.2 (2)
O5-Fe1-O3	93.59 (10)	C1-N1-Fe1	117.6 (2)

Table 2	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N3-H3E···O6	0.88	2.03	2.879 (4)	161
O9−H9E···O3	0.96	1.91	2.843 (4)	161
$C22-H22A\cdots O7^{i}$	0.97	2.55	3.460 (4)	157

Symmetry code: (i) x - 1, y - 1, z.

All H atoms were placed in calculated positions and were refined isotropically, with $U_{iso}(H)$ values constrained to $1.2U_{eq}(C,N,O)$ or $1.5U_{eq}(C)$, using a riding model with C-H = 0.93–0.97 Å.; N-H = 0.88 Å and O-H= 0.96 Å

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine

structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

- Bruker (2000). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- MacDonald, J. C., Dorrestein, P. C., Pilley, M. M., Foote, M. M., Lundburg, J. L., Henning, R. W., Schultz, A. J. & Manson, J. L. (2000). J. Am. Chem. Soc. 122, 11692–11702.
- Meng, X.-R., Song, Y.-L., Hou, H.-W., Fan, Y.-T., Li, G. & Zhu, Y. (2003). *Inorg. Chem.* 42, 1306–1315.
- Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamsipur, M. & Chadah, R. K. (2002). Can. J. Chem. 80, 1687–1696.
- Moghimi, A., Sharif, M. A. Shokrollahi, A., Shamsipur, M. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 902–908.
- Moghimi, A., Sheshmani, S., Shokrollahi, A., Shamsipur, M., Kickelbick, G. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 160–169.
- Xiao, B., Han, H.-Y., Meng, X.-R., Song, Y.-L., Fan, Y.-T., Hou, H.-W. & Zhu, Y. (2004). *Inorg. Chem. Commun.* **7**, 378–381.
- Xie, X.-J., Yang, G.-S., Cheng, L. & Wang, F. (2000). Huaxue Shiji, 22, 222-223.